Thank you for visiting the “eScience Portal for Librarians.” The “eScience Portal” is no longer being maintained by the University of Massachusetts. This regional resource has been adapted by the National Network of Libraries of Medicine, and is sustained by the network of regional medical libraries across the country. Please visit https://nnlm.gov/data for up-to-date data services and resources supported and vetted by the National Libraries of Medicine. We look forward to your continued involvement in the programming in the New England Region and beyond. If you have questions, please contact Mary.Piorun@umassmed.edu.

Data

Data
Definition: 

Data used for research can be defined as the recorded factual material that is commonly accepted in the scientific community as information that is required to validate research findings. There are four major categorical types of data: observational; experimental; simulated and derived. The term "data" does not have one clear definition, and is often interpreted differently by many depending on their field of study.

Observational data takes information drawn from studies that focus on observing particular subjects or phenomena and interpreting the results. When working with specific subjects, observational data can be collected from a treatment group as well as a controlled group to infer differences between the two. Examples of types of research that use observational data include cross-sectional and longitudinal studies.

Experimental data most commonly include results from laboratory studies – especially the measurements taken during these studies. For example, these measurements can be taken from chemical reactions or from a field study where controlled behavioral analysis was undertaken. This type of data requires rigorous documentation.

Simulation data, also commonly referred to as computational data represents information gathered from generating a computer model or simulation. Simulation data can be generated from studies in physics, or from virtual reality experiments – to name a few examples.

Derived data can most aptly be described as data that has been generated from pre-existing data. Derived data often takes data that has already been collected, and modifies or adds value to it in order to create an entirely new interpretation of the data. An example of derived data would be when a researcher takes previously collected phenotype data, and combines it with newly generated genotype data. This combination creates a new dataset that was derived from previously collected data.